
SQL References For Personal SQL Version 1.0
Copyright © 2000 – 2001 Azril Azam Abdul Rahim.
Azril Studio 2000 – 2001 All rights Reserved

PSQL Statements

Alter Table
Create Index
Create Table

Drop
Select
Delete

Insert Into
Select..Into
Transform

Update

PSQL Clause

Constraint
From
In

Where
Group by
Having

Order by
Procedure

PSQL Aggregate Functions

Avg
Count
Min, Max

StDev, StDevP
Sum
Var, VarP

PSQL Operators

Between..And
In
Like

PSQL Declaration, Operation, Predicates

Parameters Declaration
With Owneraccess Option Declaration
Inner Join Operation

Left Join, Right Join Operation
Union Operation
All Distinct, Distinctrow, Top Predicates

Other PSQL References
SQL Subqueries
SQL Expression
Wildcard Character in String Comparison
Calculating Fields in PQSL Function

PSQL Reserved Words
PSQL Supporting Data Types
Equivalent ANSI SQL Data Types
Comparison Between PSQL SQL and ANSI SQL

ALTER TABLE Statement
Modifies the design of a table after it has been created with the CREATE TABLE statement.

Syntax
ALTER TABLE table {ADD {COLUMN field type[(size)] [NOT NULL] [CONSTRAINT index] |
CONSTRAINT multifieldindex} |
DROP {COLUMN field I CONSTRAINT indexname} }

Example

adds a Salary field with a data type of Currency to the Employees table
ALTER TABLE Employees
ADD COLUMN Salary CURRENCY;

removes the Salary field from the Employees table.
ALTER TABLE Employees
DROP COLUMN Salary;

The ALTER TABLE statement has these parts:
Part Description
table The name of the table to be altered.
field The name of the field to be added to or deleted from

table.
type The data type of field.
size The field size in characters (Text and Binary fields only).
index The index for field. See the CONSTRAINT clause topic

for more information on how to construct this index.
multifieldindex The definition of a multiple-field index to be added to

table. See the CONSTRAINT clause topic for more
information on how to construct this clause.

indexname The name of the multiple-field index to be removed.

Remarks
Using the ALTER TABLE statement, you can alter an existing table in several ways. You can:

· Use ADD COLUMN to add a new field to the table. You specify the field name, data type, and (for
Text and Binary fields) an optional size. For example, the following statement adds a 25-character
Text field called Notes to the Employees table:
ALTER TABLE Employees ADD COLUMN Notes TEXT(25)
You can also define an index on that field. For more information on single-field indexes, see the
CONSTRAINT clause topic.
If you specify NOT NULL for a field, then new records are required to have valid data in that field.

· Use ADD CONSTRAINT to add a multiple-field index. For more information on multiple-field
indexes, see the CONSTRAINT clause topic.

· Use DROP COLUMN to delete a field. You specify only the name of the field.
· Use DROP CONSTRAINT to delete a multiple-field index. You specify only the index name

following the CONSTRAINT reserved word.

Notes     
· You can't add or delete more than one field or index at a time.
· You can use the CREATE INDEX statement to add a single- or multiple-field index to a table, and

you can use ALTER TABLE or the DROP statement to delete an index created with ALTER
TABLE or CREATE INDEX.

· You can use NOT NULL on a single field, or within a named CONSTRAINT clause that applies to
either a single field or to a multiple-field named CONSTRAINT. However, you can apply the NOT
NULL restriction only once to a field, or a run-time error occurs.

CONSTRAINT Clause
A constraint is similar to an index, although it can also be used to establish a relationship with another
table.

You use the CONSTRAINT clause in ALTER TABLE and CREATE TABLE statements to create or
delete constraints. There are two types of CONSTRAINT clauses: one for creating a constraint on a
single field and one for creating a constraint on more than one field.

Syntax
Single-field constraint:
CONSTRAINT name {PRIMARY KEY | UNIQUE | NOT NULL |
REFERENCES foreigntable [(foreignfield1, foreignfield2)]}

Multiple-field constraint:
CONSTRAINT name
{PRIMARY KEY (primary1[, primary2 [, ...]]) |
UNIQUE (unique1[, unique2 [, ...]]) |
NOT NULL (notnull1[, notnull2 [, ...]]) |
FOREIGN KEY (ref1[, ref2 [, ...]]) REFERENCES foreigntable [(foreignfield1 [, foreignfield2 [, ...]])]}

Example
Creates a new table called MyTable with two Text fields, a Date/Time field, and a unique index made

up of all three fields
CREATE TABLE MyTable

(FirstName TEXT, LastName TEXT,
DateOfBirth DATETIME,

                CONSTRAINT MyTableConstraint UNIQUE
(FirstName, LastName, DateOfBirth));

The CONSTRAINT clause has these parts:
Part Description
     

name The name of the constraint to be created.
primary1, primary2 The name of the field or fields to be

designated the primary key.
unique1, unique2 The name of the field or fields to be

designated as a unique key.
notnull1, notnull2 The name of the field or fields that are

restricted to non-Null values.
ref1, ref2 The name of a foreign key field or fields that

refer to fields in another table.
foreigntable The name of the foreign table containing the

field or fields specified by foreignfield.
foreignfield1,
foreignfield2

The name of the field or fields in foreigntable
specified by ref1, ref2. You can omit this
clause if the referenced field is the primary
key of foreigntable.

Remarks
You use the syntax for a single-field constraint in the field-definition clause of an ALTER TABLE or
CREATE TABLE statement immediately following the specification of the field's data type.

You use the syntax for a multiple-field constraint whenever you use the reserved word CONSTRAINT
outside a field-definition clause in an ALTER TABLE or CREATE TABLE statement.

Using CONSTRAINT, you can designate a field as one of the following types of constraints:

· You can use the UNIQUE reserved word to designate a field as a unique key. This means that no
two records in the table can have the same value in this field. You can constrain any field or list of
fields as unique. If a multiple-field constraint is designated as a unique key, the combined values of
all fields in the index must be unique, even if two or more records have the same value in just one
of the fields.

· You can use the PRIMARY KEY reserved words to designate one field or set of fields in a table as
a primary key. All values in the primary key must be unique and not Null, and there can be only
one primary key for a table.
Note     
Don't set a PRIMARY KEY constraint on a table that already has a primary key; if you do, an error
occurs.

· You can use the FOREIGN KEY reserved words to designate a field as a foreign key. If the foreign
table's primary key consists of more than one field, you must use a multiple-field constraint
definition, listing all of the referencing fields, the name of the foreign table, and the names of the
referenced fields in the foreign table in the same order that the referencing fields are listed. If the
referenced field or fields are the foreign table's primary key, you don't have to specify the
referenced fields ¾ by default, the database engine behaves as if the foreign table's primary key is
the referenced field.

CREATE INDEX Statement
Creates a new index on an existing table.

Syntax
CREATE [UNIQUE] INDEX index

ON table (field [ASC|DESC][, field [ASC|DESC], ...])
[WITH { PRIMARY | DISALLOW NULL | IGNORE NULL }]

Example
Creates an index consisting of the fields Home Phone and Extension in the Employees table.
CREATE INDEX NewIndex ON Employees
(HomePhone, Extension);

The CREATE INDEX statement has these parts:
Part Description
index The name of the index to be created.
table The name of the existing table that will contain the

index.
field The name of the field or fields to be indexed. To create

a single-field index, list the field name in parentheses
following the table name. To create a multiple-field
index, list the name of each field to be included in the
index. To create descending indexes, use the DESC
reserved word; otherwise, indexes are assumed to be
ascending.

Remarks
To prohibit duplicate values in the indexed field or fields of different records, use the UNIQUE
reserved word.

In the optional WITH clause, you can enforce data validation rules. You can:

· Prohibit Null entries in the indexed field or fields of new records by using the DISALLOW NULL
option.

· Prevent records with Null values in the indexed field or fields from being included in the index by
using the IGNORE NULL option.

· Designate the indexed field or fields as the primary key by using the PRIMARY reserved word. This
implies that the key is unique, so you can omit the UNIQUE reserved word.

You can use CREATE INDEX to create a pseudo index on a linked table in an ODBC data source,
such as SQL Server, that does not already have an index. You don't need permission or access to the
remote server to create a pseudo index, and the remote database is unaware of and unaffected by
the pseudo index. You use the same syntax for both linked and native tables. This can be especially
useful to create an index on a table that would ordinarily be read-only due to lack of an index.

You can also use the ALTER TABLE statement to add a single- or multiple-field index to a table, and
you can use the ALTER TABLE statement or the DROP statement to remove an index created with
ALTER TABLE or CREATE INDEX.

Note      Don't use the PRIMARY reserved word when you create a new index on a table that already
has a primary key; if you do, an error occurs.

CREATE TABLE Statement
Creates a new table.

Syntax
CREATE TABLE table (field1 type [(size)] [NOT NULL] [index1] [, field2 type [(size)] [NOT NULL]

[index2] [, ...]] [, CONSTRAINT multifieldindex [, ...]])

Example
Creates a new table called ThisTable with two Text fields
CREATE TABLE ThisTable
(FirstName TEXT, LastName TEXT);

The CREATE TABLE statement has these parts:
Part Description
table The name of the table to be created.
field1, field2 The name of field or fields to be created in the new

table. You must create at least one field.
type The data type of field in the new table.
size The field size in characters (Text and Binary fields only).
index1, index2 A CONSTRAINT clause defining a single-field index.

See the CONSTRAINT clause topic for more
information on how to create this index.

multifieldindex A CONSTRAINT clause defining a multiple-field index.
See the CONSTRAINT clause topic for more
information on how to create this index.

Remarks
Use the CREATE TABLE statement to define a new table and its fields and field constraints. If NOT
NULL is specified for a field, then new records are required to have valid data in that field.

A CONSTRAINT clause establishes various restrictions on a field, and can be used to establish the
primary key. You can also use the CREATE INDEX statement to create a primary key or additional
indexes on existing tables.

You can use NOT NULL on a single field, or within a named CONSTRAINT clause that applies to
either a single field or to a multiple-field named CONSTRAINT. However, you can apply the NOT
NULL restriction only once to a field, or a run-time error occurs.

DROP Statement
Deletes an existing table from a database or deletes an existing index from a table.

Syntax
DROP {TABLE table | INDEX index ON table}

Example
The following example assumes the existence of a hypothetical NewIndex
index on the Employees table in the Northwind database.
This example deletes the index MyIndex from the Employees table.
DROP INDEX NewIndex ON Employees;

The DROP statement has these parts:
Part Description
table The name of the table to be deleted or the table from

which an index is to be deleted.
index The name of the index to be deleted from table.

Remarks
You must close the table before you can delete it or remove an index from it.

You can also use ALTER TABLE to delete an index from a table.

You can use CREATE TABLE to create a table and CREATE INDEX or ALTER TABLE to create an
index. To modify a table, use ALTER TABLE.

SELECT Statement
Instructs the PSQL Jet database engine to return information from the database as a set of records.

Syntax
SELECT [predicate] { * | table.* | [table.]field1 [AS alias1] [, [table.]field2 [AS alias2] [, ...]]}

FROM tableexpression [, ...] [IN externaldatabase]
[WHERE...]
[GROUP BY...]
[HAVING...]
[ORDER BY...]
[WITH OWNERACCESS OPTION]

Example
Counts the number of records that have an entry in the PostalCode field and names the returned field

Tally.
SELECT Count (PostalCode) AS Tally FROM Customers;

The SELECT statement has these parts:
Part Description
predicate One of the following predicates: ALL, DISTINCT,

DISTINCTROW, or TOP. You use the predicate to
restrict the number of records returned. If none is
specified, the default is ALL.

* Specifies that all fields from the specified table or
tables are selected.

table The name of the table containing the fields from
which records are selected.

field1, field2 The names of the fields containing the data you want
to retrieve. If you include more than one field, they
are retrieved in the order listed.

alias1, alias2 The names to use as column headers instead of the
original column names in table.

tableexpression The name of the table or tables containing the data
you want to retrieve.

externaldatabase The name of the database containing the tables in
tableexpression if they are not in the current
database.

Remarks
To perform this operation, the PSQL Jet database engine searches the specified table or tables,
extracts the chosen columns, selects rows that meet the criterion, and sorts or groups the resulting
rows into the order specified.

SELECT statements don't change data in the database.

SELECT is usually the first word in an SQL statement. Most SQL statements are either SELECT or
SELECT...INTO statements.

The minimum syntax for a SELECT statement is:

SELECT fields FROM table

You can use an asterisk (*) to select all fields in a table. The following example selects all of the fields

in the Employees table:

SELECT * FROM Employees;

If a field name is included in more than one table in the FROM clause, precede it with the table name
and the . (dot) operator. In the following example, the Department field is in both the Employees table
and the Supervisors table. The SQL statement selects departments from the Employees table and
supervisor names from the Supervisors table:

SELECT Employees.Department, Supervisors.SupvName
FROM Employees INNER JOIN Supervisors
WHERE Employees.Department = Supervisors.Department;

When a Recordset object is created, the PSQL Jet database engine uses the table's field name as
the Field object name in the Recordset object. If you want a different field name or a name isn't
implied by the expression used to generate the field, use the AS reserved word. The following
example uses the title Birth to name the returned Field object in the resulting Recordset object:

SELECT BirthDate
AS Birth FROM Employees;

Whenever you use aggregate functions or queries that return ambiguous or duplicate Field object
names, you must use the AS clause to provide an alternate name for the Field object. The following
example uses the title HeadCount to name the returned Field object in the resulting Recordset
object:

SELECT COUNT(EmployeeID)
AS HeadCount FROM Employees;

You can use the other clauses in a SELECT statement to further restrict and organize your returned
data. For more information, see the Help topic for the clause you're using.

FROM Clause
Specifies the tables or queries that contain the fields listed in the SELECT statement.

Syntax
SELECT fieldlist

FROM tableexpression [IN externaldatabase]

Example
Shows the number of employees and the average and maximum salaries.
SELECT Count (*) AS TotalEmployees, Avg(Salary) AS AverageSalary,
Max(Salary) AS MaximumSalary
FROM Employees;

A SELECT statement containing a FROM clause has these parts:
Part Description
fieldlist The name of the field or fields to be retrieved along

with any field-name aliases, SQL aggregate
functions, selection predicates (ALL, DISTINCT,
DISTINCTROW, or TOP), or other SELECT
statement options.

tableexpression An expression that identifies one or more tables from
which data is retrieved. The expression can be a
single table name, a saved query name, or a
compound resulting from an INNER JOIN, LEFT
JOIN, or RIGHT JOIN.

externaldatabase The full path of an external database containing all
the tables in tableexpression.

Remarks
FROM is required and follows any SELECT statement.

The order of the table names in tableexpression isn't important.

For improved performance and ease of use, it's recommended that you use a linked table instead of
an IN clause to retrieve data from an external database.

The following example shows how you can retrieve data from the Employees table:

SELECT LastName, FirstName
FROM Employees;

IN Clause
Identifies tables in any external database to which the PSQL Jet database engine can connect, such
as a dBASE or Paradox database or an external PSQL Jet database.

Syntax
To identify a destination table:

[SELECT | INSERT] INTO destination IN
{path | ["path" "type"] | ["" [type; DATABASE = path]]}

To identify a source table:

FROM tableexpression IN
{path | ["path" "type"] | ["" [type; DATABASE = path]]}

Example
The following table shows how you can use the IN clause to retrieve data from an external database.
In each example, assume the hypothetical Customers table is stored in an external database.

Microsoft Jet database
SELECT CustomerIDFROM CustomersIN OtherDB.mdb WHERE CustomerID Like "A*";
dBASE III or IV.To retrieve data from a dBASE III table, substitute "dBASE III;" for "dBASE IV;".
SELECT CustomerIDFROM CustomerIN "C:\DBASE\DATA\SALES" "dBASE IV;"WHERE CustomerID Like "A*";
dBASE III or IV using Database syntax.
SELECT CustomerIDFROM CustomerIN "" [dBASE IV; Database=C:\DBASE\DATA\SALES;] WHERE CustomerID Like "A*";
Paradox 3.x or 4.x. To retrieve data from a Paradox version 3.x table, substitute "Paradox 3.x;" for "Paradox 4.x;"
SELECT CustomerIDFROM CustomerIN "C:\PARADOX\DATA\SALES" "Paradox 4.x;"WHERE CustomerID Like "A*";
Paradox 3.x or 4.x using Database syntax.
SELECT CustomerIDFROM CustomerIN "" [Paradox 4.x;Database=C:\PARADOX\DATA\SALES;] WHERE CustomerID Like

"A*";
A Microsoft Excel worksheet
SELECT CustomerID, CompanyNameFROM [Customers$] IN "c:\documents\xldata.xls" "EXCEL 5.0;"WHERE CustomerID

Like "A*"ORDER BY CustomerID;
A named range in a worksheet
SELECT CustomerID, CompanyNameFROM CustomersRangeIN "c:\documents\xldata.xls" "EXCEL 5.0;"WHERE CustomerID

Like "A*"ORDER BY CustomerID;

A SELECT statement containing an IN clause has these parts:
Part Description
destination The name of the external table into which data is

inserted.
tableexpression The name of the table or tables from which data is

retrieved. This argument can be a single table name, a
saved query, or a compound resulting from an INNER
JOIN, LEFT JOIN, or RIGHT JOIN.

path The full path for the directory or file containing table.
type The name of the database type used to create table if

a database isn't a PSQL Jet database (for example,
dBASE III, dBASE IV, Paradox 3.x, or Paradox 4.x).

Remarks
You can use IN to connect to only one external database at a time.

In some cases, the path argument refers to the directory containing the database files. For example,
when working with dBASE, FoxPro, or Paradox database tables, the path argument specifies the
directory containing .dbf or .db files. The table file name is derived from the destination or
tableexpression argument.

To specify a non-PSQL Jet database, append a semicolon (;) to the name, and enclose it in single (' ')

or double (" ") quotation marks. For example, either 'dBASE IV;' or "dBASE IV;" is acceptable.

You can also use the DATABASE reserved word to specify the external database. For example, the
following lines specify the same table:

... FROM Table IN "" [dBASE IV; DATABASE=C:\DBASE\DATA\SALES;];

... FROM Table IN "C:\DBASE\DATA\SALES" "dBASE IV;"

Notes     
· For improved performance and ease of use, use a linked table instead of IN.
· You can also use the IN reserved word as a comparison operator in an expression. For more

information, see the In operator.

WHERE Clause
Specifies which records from the tables listed in the FROM clause are affected by a SELECT,
UPDATE, or DELETE statement.

Syntax
SELECT fieldlist
FROM tableexpression
WHERE criteria

Example
Example selects the LastName and FirstName fields of each record in which
the last name is King
SELECT LastName, FirstName
FROM Employees
WHERE LastName = 'King';

A SELECT statement containing a WHERE clause has these parts:
Part Description
fieldlist The name of the field or fields to be retrieved along

with any field-name aliases, selection predicates (ALL,
DISTINCT, DISTINCTROW, or TOP), or other SELECT
statement options.

tableexpression The name of the table or tables from which data is
retrieved.

criteria An expression that records must satisfy to be included
in the query results.

Remarks
The PSQL Jet database engine selects the records that meet the conditions listed in the WHERE
clause. If you don't specify a WHERE clause, your query returns all rows from the table. If you specify
more than one table in your query and you haven't included a WHERE clause or a JOIN clause, your
query generates a Cartesian product of the tables.

WHERE is optional, but when included, follows FROM. For example, you can select all employees in
the sales department (WHERE Dept = 'Sales') or all customers between the ages of 18 and 30
(WHERE Age Between 18 And 30).

If you don't use a JOIN clause to perform SQL join operations on multiple tables, the resulting
Recordset object won't be updatable.

WHERE is similar to HAVING. WHERE determines which records are selected. Similarly, once
records are grouped with GROUP BY, HAVING determines which records are displayed.

Use the WHERE clause to eliminate records you don't want grouped by a GROUP BY clause.

Use various expressions to determine which records the SQL statement returns. For example, the
following SQL statement selects all employees whose salaries are more than $21,000:

SELECT LastName, Salary
FROM Employees
WHERE Salary > 21000;

A WHERE clause can contain up to 40 expressions linked by logical operators, such as And and Or.
When you enter a field name that contains a space or punctuation, surround the name with brackets
([]).    For example, a customer information table might include information about specific customers :

SELECT [Customer’s Favorite Restarant]

When you specify the criteria argument, date literals must be in U.S. format, even if you're not using
the U.S. version of the PSQL Jet database engine. For example, May 10, 1996, is written 10/5/96 in
the United Kingdom and 5/10/96 in the United States. Be sure to enclose your date literals with the
number sign (#) as shown in the following examples.

To find records dated May 10, 1996 in a United Kingdom database, you must use the following SQL
statement:

SELECT *
FROM Orders
WHERE ShippedDate = #5/10/96#;

You can also use the DateValue function which is aware of the international settings established by
Microsoft Windows. For example, use this code for the United States:

SELECT *
FROM Orders
WHERE ShippedDate = DateValue('5/10/96');

And use this code for the United Kingdom:

SELECT *
FROM Orders
WHERE ShippedDate = DateValue('10/5/96');

Note      If the column referenced in the criteria string is of type GUID, the criteria expression uses a
slightly different syntax:

WHERE ReplicaID = {GUID {12345678-90AB-CDEF-1234-567890ABCDEF}}

Be sure to include the nested braces and hyphens as shown.

GROUP BY Clause
Combines records with identical values in the specified field list into a single record. A summary value
is created for each record if you include an SQL aggregate function, such as Sum or Count, in the
SELECT statement.

Syntax
SELECT fieldlist
FROM table
WHERE criteria
[GROUP BY groupfieldlist]

Example
Calls the EnumFields procedure, which you can find in the SELECT statement example
SELECT Title, Count([Title]) AS Tally
FROM Employees GROUP BY Title;

A SELECT statement containing a GROUP BY clause has these parts:
Part Description
fieldlist The name of the field or fields to be retrieved along with

any field-name aliases, SQL aggregate functions,
selection predicates (ALL, DISTINCT, DISTINCTROW,
or TOP), or other SELECT statement options.

table The name of the table from which records are retrieved.
For more information, see the FROM clause.

criteria Selection criteria. If the statement includes a WHERE
clause, the PSQL Jet database engine groups values
after applying the WHERE conditions to the records.

groupfieldlist The names of up to 10 fields used to group records.
The order of the field names in groupfieldlist determines
the grouping levels from the highest to the lowest level
of grouping.

Remarks
GROUP BY is optional.

Summary values are omitted if there is no SQL aggregate function in the SELECT statement.

Null values in GROUP BY fields are grouped and aren't omitted. However, Null values aren't
evaluated in any SQL aggregate function.

Use the WHERE clause to exclude rows you don't want grouped, and use the HAVING clause to filter
records after they've been grouped.

Unless it contains Memo or OLE Object data, a field in the GROUP BY field list can refer to any field
in any table listed in the FROM clause, even if the field isn't included in the SELECT statement,
provided the SELECT statement includes at least one SQL aggregate function. The PSQL Jet
database engine can't group on Memo or OLE Object fields.

All fields in the SELECT field list must either be included in the GROUP BY clause or be included as
arguments to an SQL aggregate function.

HAVING Clause
Specifies which grouped records are displayed in a SELECT statement with a GROUP BY clause.
After GROUP BY combines records, HAVING displays any records grouped by the GROUP BY
clause that satisfy the conditions of the HAVING clause.

Syntax
SELECT fieldlist

FROM table
WHERE selectcriteria
GROUP BY groupfieldlist
[HAVING groupcriteria]

Example
Calls the EnumFields procedure, which you can find in the SELECT statement example
SELECT Title, Count(Title) as Total
FROM Employees
WHERE Region = 'WA'
GROUP BY Title HAVING Count(Title) > 1;

A SELECT statement containing a HAVING clause has these parts:
Part Description
fieldlist The name of the field or fields to be retrieved along with

any field-name aliases, SQL aggregate functions,
selection predicates (ALL, DISTINCT, DISTINCTROW,
or TOP), or other SELECT statement options.

table The name of the table from which records are retrieved.
For more information, see the FROM clause.

selectcriteria Selection criteria. If the statement includes a WHERE
clause, the PSQL Jet database engine groups values
after applying the WHERE conditions to the records.

groupfieldlist The names of up to 10 fields used to group records.
The order of the field names in groupfieldlist determines
the grouping levels from the highest to the lowest level
of grouping.

groupcriteria An expression that determines which grouped records
to display.

Remarks
HAVING is optional.

HAVING is similar to WHERE, which determines which records are selected. After records are
grouped with GROUP BY, HAVING determines which records are displayed:

SELECT CategoryID,
Sum(UnitsInStock)
FROM Products
GROUP BY CategoryID
HAVING Sum(UnitsInStock) > 100 And Like "BOS*";

A HAVING clause can contain up to 40 expressions linked by logical operators, such as And and Or.

ORDER BY Clause
Sorts a query's resulting records on a specified field or fields in ascending or descending order.

Syntax
SELECT fieldlist

FROM table
WHERE selectcriteria
[ORDER BY field1 [ASC | DESC][, field2 [ASC | DESC]][, ...]]]

Example
Calls the EnumFields procedure, which you can find in the SELECT statement example
SELECT LastName, FirstName
FROM Employees
ORDER BY LastName DESC;

A SELECT statement containing an ORDER BY clause has these parts:
Part Description
fieldlist The name of the field or fields to be retrieved along with

any field-name aliases, SQL aggregate functions,
selection predicates (ALL, DISTINCT, DISTINCTROW,
or TOP), or other SELECT statement options.

table The name of the table from which records are retrieved.
For more information, see the FROM clause.

selectcriteria Selection criteria. If the statement includes a WHERE
clause, the PSQL Jet database engine orders values
after applying the WHERE conditions to the records.

field1, field2 The names of the fields on which to sort records.

Remarks
ORDER BY is optional. However, if you want your data displayed in sorted order, then you must use
ORDER BY.

The default sort order is ascending (A to Z, 0 to 9). Both of the following examples sort employee
names in last name order:

SELECT LastName, FirstName
FROM Employees
ORDER BY LastName;

SELECT LastName, FirstName
FROM Employees
ORDER BY LastName ASC;

To sort in descending order (Z to A, 9 to 0), add the DESC reserved word to the end of each field you
want to sort in descending order. The following example selects salaries and sorts them in
descending order:

SELECT LastName, Salary
FROM Employees
ORDER BY Salary DESC, LastName;

If you specify a field containing Memo or OLE Object data in the ORDER BY clause, an error occurs.
The PSQL Jet database engine doesn't sort on fields of these types.

ORDER BY is usually the last item in an SQL statement.

You can include additional fields in the ORDER BY clause. Records are sorted first by the first field
listed after ORDER BY. Records that have equal values in that field are then sorted by the value in
the second field listed, and so on.

ALL, DISTINCT, DISTINCTROW, TOP Predicates
Specifies records selected with SQL queries.

Syntax
SELECT [ALL | DISTINCT | DISTINCTROW | [TOP n [PERCENT]]]

FROM table

Example
This example creates a query that joins the Customers and Orders tables on the CustomerID field.

The Customers table contains no duplicate CustomerID fields, but the Orders table does because
each customer can have many orders. Using DISTINCTROW produces a list of companies that
have at least one order but without any details about those orders.

SELECT DISTINCTROW
CompanyName FROM Customers
INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
ORDER BY CompanyName;

A SELECT statement containing these predicates has the following parts:
Part Description
ALL Assumed if you don't include one of the predicates. The PSQL Jet

database engine selects all of the records that meet the conditions
in the SQL statement. The following two examples are equivalent
and return all records from the Employees table:
SELECT ALL *
FROM Employees
ORDER BY EmployeeID;
SELECT *
FROM Employees
ORDER BY EmployeeID;

DISTINCT Omits records that contain duplicate data in the selected fields. To
be included in the results of the query, the values for each field
listed in the SELECT statement must be unique. For example,
several employees listed in an Employees table may have the same
last name. If two records contain Smith in the LastName field, the
following SQL statement returns only one record that contains
Smith:
SELECT DISTINCT
LastName
FROM Employees;
If you omit DISTINCT, this query returns both Smith records.
If the SELECT clause contains more than one field, the combination
of values from all fields must be unique for a given record to be
included in the results.
The output of a query that uses DISTINCT isn't updatable and
doesn't reflect subsequent changes made by other users.

DISTINCTROW Omits data based on entire duplicate records, not just duplicate
fields. For example, you could create a query that joins the
Customers and Orders tables on the CustomerID field. The
Customers table contains no duplicate CustomerID fields, but the
Orders table does because each customer can have many orders.
The following SQL statement shows how you can use
DISTINCTROW to produce a list of companies that have at least
one order but without any details about those orders:
SELECT DISTINCTROW CompanyName

FROM Customers INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
ORDER BY CompanyName;
If you omit DISTINCTROW, this query produces multiple rows for
each company that has more than one order.
DISTINCTROW has an effect only when you select fields from
some, but not all, of the tables used in the query. DISTINCTROW is
ignored if your query includes only one table, or if you output fields
from all tables.

TOP n [PERCENT] Returns a certain number of records that fall at the top or the
bottom of a range specified by an ORDER BY clause. Suppose you
want the names of the top 25 students from the class of 1994:
SELECT TOP 25
FirstName, LastName
FROM Students
WHERE GraduationYear = 1994
ORDER BY GradePointAverage DESC;
If you don't include the ORDER BY clause, the query will return an
arbitrary set of 25 records from the Students table that satisfy the
WHERE clause.
The TOP predicate doesn't choose between equal values. In the
preceding example, if the twenty-fifth and twenty-sixth highest
grade point averages are the same, the query will return 26
records.
You can also use the PERCENT reserved word to return a certain
percentage of records that fall at the top or the bottom of a range
specified by an ORDER BY clause. Suppose that, instead of the top
25 students, you want the bottom 10 percent of the class:
SELECT TOP 10 PERCENT
FirstName, LastName
FROM Students
WHERE GraduationYear = 1994
ORDER BY GradePointAverage ASC;
The ASC predicate specifies a return of bottom values. The value
that follows TOP must be an unsigned Integer.
TOP doesn't affect whether or not the query is updatable.

table The name of the table from which records are retrieved.

DELETE Statement
Creates a delete query that removes records from one or more of the tables listed in the FROM
clause that satisfy the WHERE clause.

Syntax
DELETE [table.*]

FROM table
WHERE criteria

Example
Deletes all records for employees whose title is Trainee. When the FROM clause includes only one

table, you don't have to list the table name in the DELETE statement.
DELETE * FROM Employees

WHERE Title = 'Trainee';

The DELETE statement has these parts:
Part Description
table The optional name of the table from which records are

deleted.
table The name of the table from which records are deleted.
criteria An expression that determines which records to delete.

Remarks
DELETE is especially useful when you want to delete many records.

To drop an entire table from the database, you can use the Execute method with a DROP statement.
If you delete the table, however, the structure is lost. In contrast, when you use DELETE, only the
data is deleted; the table structure and all of the table properties, such as field attributes and indexes,
remain intact.

You can use DELETE to remove records from tables that are in a one-to-many relationship with other
tables. Cascade delete operations cause the records in tables that are on the many side of the
relationship to be deleted when the corresponding record in the one side of the relationship is deleted
in the query. For example, in the relationship between the Customers and Orders tables, the
Customers table is on the one side and the Orders table is on the many side of the relationship.
Deleting a record from Customers results in the corresponding Orders records being deleted if the
cascade delete option is specified.

A delete query deletes entire records, not just data in specific fields. If you want to delete values in a
specific field, create an update query that changes the values to Null.
Important     
· After you remove records using a delete query, you can't undo the operation. If you want to know

which records were deleted, first examine the results of a select query that uses the same criteria,
and then run the delete query.

· Maintain backup copies of your data at all times. If you delete the wrong records, you can retrieve
them from your backup copies.

INNER JOIN Operation
Combines records from two tables whenever there are matching values in a common field.

Syntax
FROM table1 INNER JOIN table2 ON table1.field1 compopr table2.field2

Example
Calls the EnumFields procedure, which you can find in the SELECT statement example
SELECT DISTINCTROW Sum (UnitPrice * Quantity) AS Sales,
(FirstName & Chr(32) & LastName) AS Name
FROM Employees
INNER JOIN (Orders INNER JOIN [Order Details]
ON [Order Details].OrderID = Orders.OrderID)
ON Orders.EmployeeID = Employees.EmployeeID
GROUP BY (FirstName & Chr(32) & LastName);

The INNER JOIN operation has these parts:
Part Description
table1, table2 The names of the tables from which records are

combined.
field1, field2 The names of the fields that are joined. If they aren't

numeric, the fields must be of the same data type and
contain the same kind of data, but they don't have to
have the same name.

compopr Any relational comparison operator: "=," "<," ">," "<=,"
">=," or "<>."

Remarks
You can use an INNER JOIN operation in any FROM clause. This is the most common type of join.
Inner joins combine records from two tables whenever there are matching values in a field common to
both tables.

You can use INNER JOIN with the Departments and Employees tables to select all the employees in
each department. In contrast, to select all departments (even if some have no employees assigned to
them) or all employees (even if some aren't assigned to a department), you can use a LEFT JOIN or
RIGHT JOIN operation to create an outer join.

If you try to join fields containing Memo or OLE Object data, an error occurs.

You can join any two numeric fields of like types. For example, you can join on AutoNumber and Long
fields because they are like types. However, you cannot join Single and Double types of fields.

The following example shows how you could join the Categories and Products tables on the
CategoryID field:

SELECT CategoryName, ProductName
FROM Categories INNER JOIN Products
ON Categories.CategoryID = Products.CategoryID;

In the preceding example, CategoryID is the joined field, but it isn't included in the query output
because it isn't included in the SELECT statement. To include the joined field, include the field name
in the SELECT statement ¾ in this case, Categories.CategoryID.

You can also link several ON clauses in a JOIN statement, using the following syntax:

SELECT fields
FROM table1 INNER JOIN table2
ON table1.field1 compopr table2.field1 AND
ON table1.field2 compopr table2.field2) OR
ON table1.field3 compopr table2.field3)];

You can also nest JOIN statements using the following syntax:

SELECT fields
FROM table1 INNER JOIN
(table2 INNER JOIN [(]table3   
[INNER JOIN [(]tablex [INNER JOIN ...)]   
ON table3.field3 compopr tablex.fieldx)]
ON table2.field2 compopr table3.field3)   
ON table1.field1 compopr table2.field2;

A LEFT JOIN or a RIGHT JOIN may be nested inside an INNER JOIN, but an INNER JOIN may not
be nested inside a LEFT JOIN or a RIGHT JOIN.

INSERT INTO Statement
Adds a record or multiple records to a table. This is referred to as an append query.

Syntax
Multiple-record append query:
INSERT INTO target [IN externaldatabase] [(field1[, field2[, ...]])]
SELECT [source.]field1[, field2[, ...]
FROM tableexpression

Single-record append query:
INSERT INTO target [(field1[, field2[, ...]])]
VALUES (value1[, value2[, ...])

Example
Creates a new record in the Employees table
INSERT INTO Employees (FirstName,LastName, Title)
VALUES ('Harry', 'Washington', 'Trainee');

The INSERT INTO statement has these parts:
Part Description
target The name of the table or query to append records

to.
externaldatabase The path to an external database. For a description

of the path, see the IN clause.
source The name of the table or query to copy records

from.
field1, field2 Names of the fields to append data to, if following a

target argument, or the names of fields to obtain
data from, if following a source argument.

tableexpression The name of the table or tables from which records
are inserted. This argument can be a single table
name or a compound resulting from an INNER
JOIN, LEFT JOIN, or RIGHT JOIN operation or a
saved query.

value1, value2 The values to insert into the specific fields of the
new record. Each value is inserted into the field that
corresponds to the value's position in the list: value1
is inserted into field1 of the new record, value2 into
field2, and so on. You must separate values with a
comma, and enclose text fields in quotation marks
(' ').

Remarks
You can use the INSERT INTO statement to add a single record to a table using the single-record
append query syntax as shown above. In this case, your code specifies the name and value for each
field of the record. You must specify each of the fields of the record that a value is to be assigned to
and a value for that field. When you don't specify each field, the default value or Null is inserted for
missing columns. Records are added to the end of the table.

You can also use INSERT INTO to append a set of records from another table or query by using the
SELECT ... FROM clause as shown above in the multiple-record append query syntax. In this case,

the SELECT clause specifies the fields to append to the specified target table.

The source or target table may specify a table or a query. If a query is specified, the PSQL Jet
database engine appends records to any and all tables specified by the query.

INSERT INTO is optional but when included, precedes the SELECT statement.

If your destination table contains a primary key, make sure you append unique, non-Null values to the
primary key field or fields; if you don't, the PSQL Jet database engine won't append the records.

If you append records to a table with an AutoNumber field and you want to renumber the appended
records, don't include the AutoNumber field in your query. Do include the AutoNumber field in the
query if you want to retain the original values from the field.

Use the IN clause to append records to a table in another database.

To create a new table, use the SELECT... INTO statement instead to create a make-table query.

To find out which records will be appended before you run the append query, first execute and view
the results of a select query that uses the same selection criteria.

An append query copies records from one or more tables to another. The tables that contain the
records you append aren't affected by the append query.

Instead of appending existing records from another table, you can specify the value for each field in a
single new record using the VALUES clause. If you omit the field list, the VALUES clause must
include a value for every field in the table; otherwise, the INSERT operation will fail. Use an additional
INSERT INTO statement with a VALUES clause for each additional record you want to create.

LEFT JOIN, RIGHT JOIN Operations
Combines source-table records when used in any FROM clause.

Syntax
FROM table1 [LEFT | RIGHT] JOIN table2

ON table1.field1 compopr table2.field2

Example
Calls the EnumFields procedure, which you can find in the SELECT statement example.
SELECT [Department Name], FirstName & Chr(32) & LastName AS Name
FROM Departments LEFT JOIN Employees
ON Departments.[Department ID] = Employees.[Department ID]
ORDER BY [Department Name];

The LEFT JOIN and RIGHT JOIN operations have these parts:
Part Description
table1, table2 The names of the tables from which records are

combined.
field1, field2 The names of the fields that are joined. The fields must

be of the same data type and contain the same kind of
data, but they don't need to have the same name.

compopr Any relational comparison operator: "=," "<," ">," "<=,"
">=," or "<>."

Remarks
Use a LEFT JOIN operation to create a left outer join. Left outer joins include all of the records from
the first (left) of two tables, even if there are no matching values for records in the second (right) table.

Use a RIGHT JOIN operation to create a right outer join. Right outer joins include all of the records
from the second (right) of two tables, even if there are no matching values for records in the first (left)
table.

For example, you could use LEFT JOIN with the Departments (left) and Employees (right) tables to
select all departments, including those that have no employees assigned to them. To select all
employees, including those who aren't assigned to a department, you would use RIGHT JOIN.

The following example shows how you could join the Categories and Products tables on the
CategoryID field. The query produces a list of all categories, including those that contain no products:

SELECT CategoryName,
ProductName
FROM Categories LEFT JOIN Products
ON Categories.CategoryID = Products.CategoryID;

In this example, CategoryID is the joined field, but it isn't included in the query results because it isn't
included in the SELECT statement. To include the joined field, enter the field name in the SELECT
statement ¾ in this case, Categories.CategoryID.

Notes     
· To create a query that includes only records in which the data in the joined fields is the same, use

an INNER JOIN operation.
· A LEFT JOIN or a RIGHT JOIN can be nested inside an INNER JOIN, but an INNER JOIN cannot

be nested inside a LEFT JOIN or a RIGHT JOIN. See the discussion of nesting in the INNER JOIN

topic to see how to nest joins within other joins.
· You can link multiple ON clauses. See the discussion of clause linking in the INNER JOIN topic to

see how this is done.
· If you try to join fields containing Memo or OLE Object data, an error occurs.

PARAMETERS Declaration
Declares the name and data type of each parameter in a parameter query.

Syntax
PARAMETERS name datatype [, name datatype [, ...]]

Example
PARAMETERS [Employee Title] TEXT;

The PARAMETERS declaration has these parts:
Part Description
name The name of the parameter. Assigned to the Name

property of the Parameter object and used to identify
this parameter in the Parameters collection. You can
use name as a string that is displayed in a dialog box
while your application runs the query. Use brackets ([])
to enclose text that contains spaces or punctuation. For
example, [Low price] and [Begin report with which
month?] are valid name arguments.

datatype One of the primary PSQL Jet SQL data types or their
synonyms.

Remarks
For queries that you run regularly, you can use a PARAMETERS declaration to create a parameter
query. A parameter query can help automate the process of changing query criteria. With a parameter
query, your code will need to provide the parameters each time the query is run.

The PARAMETERS declaration is optional but when included precedes any other statement,
including SELECT.

If the declaration includes more than one parameter, separate them with commas. The following
example includes two parameters:

PARAMETERS [Low price] Currency, [Beginning date] DateTime;

You can use name but not datatype in a WHERE or HAVING clause. The following example expects
two parameters to be provided and then applies the criteria to records in the Orders table:

PARAMETERS [Low price] Currency,
[Beginning date] DateTime;
SELECT OrderID, OrderAmount
FROM Orders
WHERE OrderAmount > [Low price]
AND OrderDate >= [Beginning date];

PROCEDURE Clause
Defines a name and optional parameters for a query.

Syntax
PROCEDURE name [param1 datatype[, param2 datatype[, ...]]

Example
PROCEDURE CategoryList
SELECT DISTINCTROW CategoryName,
CategoryID FROM Categories
ORDER BY CategoryName;

The PROCEDURE clause has these parts:
Part Description
name A name for the procedure. It must follow standard

naming conventions.
param1,
param2

One or more field names or parameters. For example:
PROCEDURE Sales_By_Country [Beginning Date]
DateTime, [Ending Date] DateTime;
For more information on parameters, see
PARAMETERS.

datatype One of the primary PSQL Jet SQL data types or their
synonyms.

Remarks
An SQL procedure consists of a PROCEDURE clause (which specifies the name of the procedure),
an optional list of parameter definitions, and a single SQL statement. For example, the procedure
Get_Part_Number might run a query that retrieves a specified part number.

Notes
· If the clause includes more than one field definition (that is, param-datatype pairs), separate them

with commas.
· The PROCEDURE clause must be followed by an SQL statement (for example, a SELECT or

UPDATE statement).

SELECT...INTO Statement
Creates a make-table query.

Syntax
SELECT field1[, field2[, ...]] INTO newtable [IN externaldatabase]

FROM source

Example
Selects all records in the Employees table and copies them into a new table
named Emp Backup
SELECT Employees.*
INTO [Emp Backup] FROM Employees;

The SELECT...INTO statement has these parts:
Part Description
field1, field2 The name of the fields to be copied into the new table.
newtable The name of the table to be created. It must conform to

standard naming conventions. If newtable is the same
as the name of an existing table, a trappable error
occurs.

externaldataba
se

The path to an external database. For a description of
the path, see the IN clause.

source The name of the existing table from which records are
selected. This can be single or multiple tables or a
query.

Remarks
You can use make-table queries to archive records, make backup copies of your tables, or make
copies to export to another database or to use as a basis for reports that display data for a particular
time period. For example, you could produce a Monthly Sales by Region report by running the same
make-table query each month.

Notes
· You may want to define a primary key for the new table. When you create the table, the fields in the

new table inherit the data type and field size of each field in the query's underlying tables, but no
other field or table properties are transferred.

· To add data to an existing table, use the INSERT INTO statement instead to create an append
query.

· To find out which records will be selected before you run the make-table query, first examine the
results of a SELECT statement that uses the same selection criteria.

SQL Subqueries
A subquery is a SELECT statement nested inside a SELECT, SELECT...INTO, INSERT...INTO,
DELETE, or UPDATE statement or inside another subquery.

Syntax
You can use three forms of syntax to create a subquery:
comparison [ANY | ALL | SOME] (sqlstatement)
expression [NOT] IN (sqlstatement)
[NOT] EXISTS (sqlstatement)

Example
List the name and contact of every customer who placed an
order in the second quarter of 1995.
SELECT ContactName, CompanyName, ContactTitle, Phone
FROM Customers
WHERE CustomerID
IN (SELECT CustomerID FROM Orders
WHERE OrderDate Between #04/1/95# And #07/1/95#;

A subquery has these parts:
Part Description
comparison An expression and a comparison operator that

compares the expression with the results of the
subquery.

expression An expression for which the result set of the subquery
is searched.

 sqlstatement A SELECT statement, following the same format and
rules as any other SELECT statement. It must be
enclosed in parentheses.

Remarks
You can use a subquery instead of an expression in the field list of a SELECT statement or in a
WHERE or HAVING clause. In a subquery, you use a SELECT statement to provide a set of one or
more specific values to evaluate in the WHERE or HAVING clause expression.

Use the ANY or SOME predicate, which are synonymous, to retrieve records in the main query that
satisfy the comparison with any records retrieved in the subquery. The following example returns all
products whose unit price is greater than that of any product sold at a discount of 25 percent or more:

SELECT * FROM Products
WHERE UnitPrice > ANY
(SELECT UnitPrice FROM OrderDetails
WHERE Discount >= .25);

Use the ALL predicate to retrieve only those records in the main query that satisfy the comparison
with all records retrieved in the subquery. If you changed ANY to ALL in the previous example, the
query would return only those products whose unit price is greater than that of all products sold at a
discount of 25 percent or more. This is much more restrictive.

Use the IN predicate to retrieve only those records in the main query for which some record in the
subquery contains an equal value. The following example returns all products with a discount of 25
percent or more:

SELECT * FROM Products
WHERE ProductID IN
(SELECT ProductID FROM OrderDetails
WHERE Discount >= .25);

Conversely, you can use NOT IN to retrieve only those records in the main query for which no record
in the subquery contains an equal value.

Use the EXISTS predicate (with the optional NOT reserved word) in true/false comparisons to
determine whether the subquery returns any records.

You can also use table name aliases in a subquery to refer to tables listed in a FROM clause outside
the subquery. The following example returns the names of employees whose salaries are equal to or
greater than the average salary of all employees having the same job title. The Employees table is
given the alias "T1":

SELECT LastName,
FirstName, Title, Salary
FROM Employees AS T1
WHERE Salary >=
(SELECT Avg(Salary)
FROM Employees
WHERE T1.Title = Employees.Title) Order by Title;

In the preceding example, the AS reserved word is optional.

Some subqueries are allowed in crosstab queries ¾ specifically, as predicates (those in the WHERE
clause). Subqueries as output (those in the SELECT list) are not allowed in crosstab queries.

TRANSFORM Statement
Creates a crosstab query.

Syntax
TRANSFORM aggfunction

selectstatement
PIVOT pivotfield [IN (value1[, value2[, ...]])]

Example
TRANSFORM Count(OrderID)
SELECT FirstName AS FullName
FROM Employees INNER JOIN Orders
ON Employees.EmployeeID = Orders.EmployeeID
WHERE DatePart (""yyyy"", OrderDate) = [prmYear];

The TRANSFORM statement has these parts:
Part Description
aggfunction An SQL aggregate function that operates on the

selected data.
selectstatemen
t

A SELECT statement.

pivotfield The field or expression you want to use to create
column headings in the query's result set.

value1, value2 Fixed values used to create column headings.

Remarks
When you summarize data using a crosstab query, you select values from specified fields or
expressions as column headings so you can view data in a more compact format than with a select
query.

TRANSFORM is optional but when included is the first statement in an SQL string. It precedes a
SELECT statement that specifies the fields used as row headings and a GROUP BY clause that
specifies row grouping. Optionally, you can include other clauses, such as WHERE, that specify
additional selection or sorting criteria. You can also use subqueries as predicates ¾ specifically, those
in the WHERE clause ¾ in a crosstab query.

The values returned in pivotfield are used as column headings in the query's result set. For example,
pivoting the sales figures on the month of the sale in a crosstab query would create 12 columns. You
can restrict pivotfield to create headings from fixed values (value1, value2) listed in the optional IN
clause. You can also include fixed values for which no data exists to create additional columns.

UNION Operation
Creates a union query, which combines the results of two or more independent queries or tables.

Syntax
[TABLE] query1 UNION [ALL] [TABLE] query2 [UNION [ALL] [TABLE] queryn [...]]

Example
Retrieves the names and cities of all suppliers and customers in Brazil
SELECT CompanyName, City FROM Suppliers
WHERE Country = 'Brazil'
UNION
SELECT CompanyName, City FROM Customers
WHERE Country = 'Brazil';

The UNION operation has these parts:
Part Description
query1-n A SELECT statement, the name of a stored query, or

the name of a stored table preceded by the TABLE
keyword.

Remarks
You can merge the results of two or more queries, tables, and SELECT statements, in any
combination, in a single UNION operation. The following example merges an existing table named
New Accounts and a SELECT statement:

TABLE [New Accounts] UNION ALL
SELECT *
FROM Customers
WHERE OrderAmount > 1000;

By default, no duplicate records are returned when you use a UNION operation; however, you can
include the ALL predicate to ensure that all records are returned. This also makes the query run
faster.

All queries in a UNION operation must request the same number of fields; however, the fields don't
have to be of the same size or data type.

Use aliases only in the first SELECT statement because they are ignored in any others. In the
ORDER BY clause, refer to fields by what they are called in the first SELECT statement.

Notes
· You can use a GROUP BY or HAVING clause in each query argument to group the returned data.
· You can use an ORDER BY clause at the end of the last query argument to display the returned

data in a specified order.

UPDATE Statement
Creates an update query that changes values in fields in a specified table based on specified criteria.

Syntax
UPDATE table

SET newvalue
WHERE criteria;

Example
Changes values in the ReportsTo field to 5 for all employee records that currently have ReportsTo
values of 2
UPDATE Employees
SET ReportsTo = 5
WHERE ReportsTo = 2;

The UPDATE statement has these parts:
Part Description
table The name of the table containing the data you want to

modify.
newvalue An expression that determines the value to be inserted

into a particular field in the updated records.
criteria An expression that determines which records will be

updated. Only records that satisfy the expression are
updated.

Remarks
UPDATE is especially useful when you want to change many records or when the records that you
want to change are in multiple tables.

You can change several fields at the same time. The following example increases the Order Amount
values by 10 percent and the Freight values by 3 percent for shippers in the United Kingdom:

UPDATE Orders
SET OrderAmount = OrderAmount * 1.1,
Freight = Freight * 1.03
WHERE ShipCountry = 'UK';

Important     
· UPDATE doesn't generate a result set. Also, after you update records using an update query, you

can't undo the operation. If you want to know which records were updated, first examine the results
of a select query that uses the same criteria, and then run the update query.

· Maintain backup copies of your data at all times. If you update the wrong records, you can retrieve
them from your backup copies.

WITH OWNERACCESS OPTION Declaration
In a multiuser environment with a secure workgroup, use this declaration with a query to give the user
who runs the query the same permissions as the query's owner.

Syntax
sqlstatement

WITH OWNERACCESS OPTION

Remarks
The WITH OWNERACCESS OPTION declaration is optional.

The following example enables the user to view salary information (even if the user doesn't otherwise
have permission to view the Payroll table), provided that the query's owner does have that
permission:

SELECT LastName,
FirstName, Salary
FROM Employees
ORDER BY LastName
WITH OWNERACCESS OPTION;

If a user is otherwise prevented from creating or adding to a table, you can use WITH
OWNERACCESS OPTION to enable the user to run a make-table or append query.

If you want to enforce workgroup security settings and users' permissions, don't include the WITH
OWNERACCESS OPTION declaration.

This option requires you to have access to the System.mdw file associated with the database. It's
really useful only in secured multiuser implementations.

Avg Function
Calculates the arithmetic mean of a set of values contained in a specified field on a query.

Syntax
Avg(expr)

Example
Calculate the average freight charges for orders with freight charges over $100
SELECT Avg(Freight) AS [Average Freight]
FROM Orders WHERE Freight > 100;

The expr placeholder represents a string expression identifying the field that contains the numeric data
you want to average or an expression that performs a calculation using the data in that field. Operands in
expr can include the name of a table field, a constant, or a function (which can be either intrinsic or user-
defined but not one of the other SQL aggregate functions).

Remarks
The average calculated by Avg is the arithmetic mean (the sum of the values divided by the number
of values). You could use Avg, for example, to calculate average freight cost.

The Avg function doesn't include any Null fields in the calculation.

You can use Avg in a query expression and in the SQL property of a QueryDef object or when
creating a Recordset object based on an SQL query.

Count Function
Calculates the number of records returned by a query.

Syntax
Count(expr)

Example
Calculate the number of orders shipped to the United Kingdom.
SELECT Count (ShipCountry) AS [UK Orders]
FROM Orders WHERE ShipCountry = 'UK';

The expr placeholder represents a string expression identifying the field that contains the data you
want to count or an expression that performs a calculation using the data in the field. Operands in
expr can include the name of a table field or function (which can be either intrinsic or user-defined but
not other SQL aggregate functions). You can count any kind of data, including text.

Remarks
You can use Count to count the number of records in an underlying query. For example, you could
use Count to count the number of orders shipped to a particular country.

Although expr can perform a calculation on a field, Count simply tallies the number of records. It
doesn't matter what values are stored in the records.

The Count function doesn't count records that have Null fields unless expr is the asterisk (*) wildcard
character. If you use an asterisk, Count calculates the total number of records, including those that
contain Null fields. Count(*) is considerably faster than Count([Column Name]). Don't enclose the
asterisk in quotation marks (' '). The following example calculates the number of records in the Orders
table:

SELECT Count(*)
AS TotalOrders FROM Orders;

If expr identifies multiple fields, the Count function counts a record only if at least one of the fields is
not Null. If all of the specified fields are Null, the record isn't counted. Separate the field names with
an ampersand (&). The following example shows how you can limit the count to records in which
either ShippedDate or Freight isn't Null:
SELECT
Count('ShippedDate & Freight')
AS [Not Null] FROM Orders;

You can use Count in a query expression. You can also use this expression in the SQL property of a
QueryDef object or when creating a Recordset object based on an SQL query.

First, Last Functions
Return a field value from the first or last record in the result set returned by a query.

Syntax
First(expr)
Last(expr)

Example
Return the values from the LastName field of the first and last records returned from the table.
SELECT First(LastName) as First, Last(LastName) as Last
FROM Employees;

The expr placeholder represents a string expression identifying the field that contains the data you
want to use or an expression that performs a calculation using the data in that field. Operands in expr
can include the name of a table field, a constant, or a function (which can be either intrinsic or user-
defined but not one of the other SQL aggregate functions).

Remarks
They simply return the value of a specified field in the first or last record, respectively, of the result set
returned by a query. Because records are usually returned in no particular order (unless the query
includes an ORDER BY clause), the records returned by these functions will be arbitrary.

Min, Max Functions
Return the minimum or maximum of a set of values contained in a specified field on a query.

Syntax
Min(expr)
Max(expr)

Example
Return the lowest and highest freight charges for orders shipped to the United Kingdom
SELECT Min(Freight) AS [Low Freight],
Max(Freight)AS [High Freight]
FROM Orders WHERE ShipCountry = 'UK';

The expr placeholder represents a string expression identifying the field that contains the data you
want to evaluate or an expression that performs a calculation using the data in that field. Operands in
expr can include the name of a table field, a constant, or a function (which can be either intrinsic or
user-defined but not one of the other SQL aggregate functions).

Remarks
You can use Min and Max to determine the smallest and largest values in a field based on the
specified aggregation, or grouping. For example, you could use these functions to return the lowest
and highest freight cost. If there is no aggregation specified, then the entire table is used.

You can use Min and Max in a query expression and in the SQL property of a QueryDef object or
when creating a Recordset object based on an SQL query.

StDev, StDevP Functions
Return estimates of the standard deviation for a population or a population sample represented as a
set of values contained in a specified field on a query.

Syntax
StDev(expr)
StDevP(expr)

Example
Estimate the standard deviation of the freight charges for orders shipped to the United Kingdom.
SELECT StDev(Freight)
AS [Freight Deviation] FROM Orders
WHERE ShipCountry = 'UK';

The expr placeholder represents a string expression identifying the field that contains the numeric
data you want to evaluate or an expression that performs a calculation using the data in that field.
Operands in expr can include the name of a table field, a constant, or a function (which can be either
intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks
The StDevP function evaluates a population, and the StDev function evaluates a population sample.

If the underlying query contains fewer than two records (or no records, for the StDevP function),
these functions return a Null value (which indicates that a standard deviation can't be calculated).

You can use the StDev and StDevP functions in a query expression. You can also use this
expression in the SQL property of a QueryDef object or when creating a Recordset object based on
an SQL query.

Sum Function
Returns the sum of a set of values contained in a specified field on a query.

Syntax
Sum(expr)

Example
Calculate the total sales for orders shipped to the United Kingdom.
SELECT Sum(UnitPrice*Quantity)AS [Total UK Sales]
FROM Orders
INNER JOIN [Order Details]
ON Orders.OrderID = [Order Details].OrderID
WHERE (ShipCountry = 'UK');

The expr placeholder represents a string expression identifying the field that contains the numeric
data you want to add or an expression that performs a calculation using the data in that field.
Operands in expr can include the name of a table field, a constant, or a function (which can be either
intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks
The Sum function totals the values in a field. For example, you could use the Sum function to
determine the total cost of freight charges.

The Sum function ignores records that contain Null fields. The following example shows how you can
calculate the sum of the products of UnitPrice and Quantity fields:

SELECT
Sum(UnitPrice * Quantity)
AS [Total Revenue] FROM [Order Details];

You can use the Sum function in a query expression. You can also use this expression in the SQL
property of a QueryDef object or when creating a Recordset based on an SQL query.

Var, VarP Functions
Return estimates of the variance for a population or a population sample represented as a set of
values contained in a specified field on a query.

Syntax
Var(expr)
VarP(expr)

Example
Estimate the variance of freight costs for orders shipped to the United Kingdom.
SELECT Var(Freight) AS [UK Freight Variance]
FROM Orders WHERE ShipCountry = 'UK';

The expr placeholder represents a string expression identifying the field that contains the numeric
data you want to evaluate or an expression that performs a calculation using the data in that field.
Operands in expr can include the name of a table field, a constant, or a function (which can be either
intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks
The VarP function evaluates a population, and the Var function evaluates a population sample.

If the underlying query contains fewer than two records, the Var and VarP functions return a Null
value, which indicates that a variance can't be calculated.

You can use the Var and VarP functions in a query expression or in an SQL statement.

Calculating Fields in SQL Functions
You can use the string expression argument in an SQL aggregate function to perform a calculation on
values in a field. For example, you could calculate a percentage (such as a surcharge or sales tax) by
multiplying a field value by a fraction.

The following table provides examples of calculations on fields from the Orders and Order Details
tables in the Northwind.mdb database.

Calculation Example
Add a number to a field Freight + 5
Subtract a number from a field Freight - 5
Multiply a field by a number UnitPrice * 2
Divide a field by a number Freight / 2
Add one field to another UnitsInStock + UnitsOnOrder
Subtract one field from another ReorderLevel - UnitsInStock

The following example calculates the average discount amount of all orders in the Northwind.mdb
database. It multiplies the values in the UnitPrice and Discount fields to determine the discount
amount of each order and then calculates the average.

SELECT Avg(UnitPrice * Discount) AS [Average Discount] FROM [Order Details];

Between...And Operator
Determines whether the value of an expression falls within a specified range of values. You can use
this operator within SQL statements.

Syntax
expr [Not] Between value1 And value2

Example
Lists the name and contact of every customer who placed an order
in the second quarter of 1995
SELECT ContactName, CompanyName, ContactTitle, Phone
FROM Customers
WHERE CustomerID
IN (SELECT CustomerID FROM Orders
WHERE OrderDate Between #04/1/95# And #07/1/95#);"

The Between...And operator syntax has these parts:
Part Description
expr Expression identifying the field that contains the data

you want to evaluate.
value1, value2 Expressions against which you want to evaluate expr.

Remarks
If the value of expr is between value1 and value2 (inclusive), the Between...And operator returns
True; otherwise, it returns False. You can include the Not logical operator to evaluate the opposite
condition (that is, whether expr lies outside the range defined by value1 and value2).

You might use Between...And to determine whether the value of a field falls within a specified
numeric range. The following example determines whether an order was shipped to a location within
a range of postal codes. If the postal code is between 98101 and 98199, the IIf function returns
"Local". Otherwise, it returns "Nonlocal".

SELECT IIf(PostalCode Between 98101 And 98199, "Local", "Nonlocal")
FROM Publishers

If expr, value1, or value2 is Null, Between...And returns a Null value.

Because wildcard characters, such as *, are treated as literals, you cannot use them with the
Between...And operator. For example, you cannot use 980* and 989* to find all postal codes that
start with 980 to 989. Instead, you have two alternatives for accomplishing this. You can add an
expression to the query that takes the left three characters of the text field and use Between...And on
those characters. Or you can pad the high and low values with extra characters ¾ in this case, 98000
to 98999, or 98000 to 98999 – 9999 if using extended postal codes. (You must omit the – 0000 from
the low values because otherwise 98000 is dropped if some postal codes have extended sections
and others do not.)

Comparison of PSQL Jet Database Engine SQL and
ANSI SQL
PSQL Jet database engine SQL is generally ANSI-89 Level 1 compliant. However, certain ANSI SQL
features aren't implemented in PSQL Jet SQL. Conversely, PSQL Jet SQL includes reserved words
and features not supported in ANSI SQL.

Major Differences
· PSQL Jet SQL and ANSI SQL each have different reserved words and data types. For more

information, see PSQL Jet Database Engine SQL Reserved Words and Equivalent ANSI SQL Data
Types.

· Different rules apply to the Between...And construct, which has the following syntax:
expr1 [NOT] Between value1 And value2

In PSQL Jet SQL, value1 can be greater than value2; in ANSI SQL, value1 must be equal to or
less than value2.

· Different wildcard characters are used with the Like operator.

Matching character
PSQL Jet SQL

ANSI SQL
Any single character ? _ (underscore)
Zero or more
characters

* %

· PSQL Jet SQL is generally less restrictive. For example, it permits grouping and ordering on
expressions.

· PSQL Jet SQL supports more powerful expressions.

Enhanced Features of PSQL Jet SQL
PSQL Jet SQL provides the following enhanced features:

· The TRANSFORM statement, which provides support for crosstab queries
· Additional aggregate functions, such as StDev and VarP
· The PARAMETERS declaration for defining parameter queries

ANSI SQL Features Not Supported in PSQL Jet SQL
PSQL Jet SQL doesn't support the following ANSI SQL features:

· Security statements, such as COMMIT, GRANT, and LOCK.
· DISTINCT aggregate function references. For example, PSQL Jet SQL doesn't allow

SUM(DISTINCT columnname).
· The LIMIT TO nn ROWS clause used to limit the number of rows returned by a query. You can use

only the WHERE clause to limit the scope of a query.

Equivalent ANSI SQL Data Types
The following table lists ANSI SQL data types and the equivalent PSQL Jet database engine SQL
data types and their valid synonyms.

ANSI SQL
data type

PSQL Jet
SQL data type Synonym

BIT, BIT VARYING BINARY (See
Notes)

VARBINARY

Not supported BIT (See Notes) BOOLEAN, LOGICAL,
LOGICAL1, YESNO

Not supported BYTE INTEGER1
Not supported COUNTER AUTOINCREMENT
Not supported CURRENCY MONEY
DATE, TIME,
TIMESTAMP

DATETIME DATE, TIME,
TIMESTAMP

Not supported GUID
DECIMAL Not supported
REAL SINGLE FLOAT4,

IEEESINGLE, REAL
DOUBLE
PRECISION,
FLOAT

DOUBLE FLOAT, FLOAT8,
IEEEDOUBLE,
NUMBER, NUMERIC

SMALLINT SHORT INTEGER2,
SMALLINT

INTEGER LONG INT, INTEGER,
INTEGER4

INTERVAL Not supported
Not supported LONGBINARY GENERAL,

OLEOBJECT
Not supported LONGTEXT LONGCHAR, MEMO,

NOTE
CHARACTER,
CHARACTER
VARYING

TEXT ALPHANUMERIC,
CHAR, CHARACTER,
STRING, VARCHAR

Not supported VALUE (See Notes)

Notes
· The ANSI SQL BIT data type doesn't correspond to the PSQL Jet SQL BIT data type, but it

corresponds to the BINARY data type instead. There is no ANSI SQL equivalent for the PSQL Jet
SQL BIT data type.

· The VALUE reserved word doesn't represent a data type defined by the PSQL Jet database
engine.

In Operator
Determines whether the value of an expression is equal to any of several values in a specified list.

Syntax
expr [Not] In(value1, value2,    . . .)

Example
Query that includes all orders shipped to Lancashire and Essex and the dates shipped
SELECT CustomerID, ShippedDate FROM Orders
WHERE ShipRegion In ('Lancashire','Essex');

The In operator syntax has these parts:
Part Description
expr Expression identifying the field that contains the data

you want to evaluate.
value1, value2 Expression or list of expressions against which you

want to evaluate expr.

Remarks
If expr is found in the list of values, the In operator returns True; otherwise, it returns False. You can
include the Not logical operator to evaluate the opposite condition (that is, whether expr is not in the
list of values).

For example, you can use In to determine which orders are shipped to a set of specified regions:

SELECT *
FROM Orders
WHERE ShipRegion In ('Avon','Glos','Som')

Like Operator
Compares a string expression to a pattern in an SQL expression.

Syntax
expression Like "pattern"

Example
Returns a list of employees whose names begin with the letters A through D.
SELECT LastName, FirstName
FROM Employees
WHERE LastName Like '[A-D]*';

The Like operator syntax has these parts:
Part Description
expression SQL expression used in a WHERE clause.
pattern String or character string literal against which

expression is compared.

Remarks
You can use the Like operator to find values in a field that match the pattern you specify. For pattern,
you can specify the complete value (for example, Like "Smith"), or you can use wildcard characters to
find a range of values (for example, Like "Sm*").

In an expression, you can use the Like operator to compare a field value to a string expression. For
example, if you enter Like "C*" in an SQL query, the query returns all field values beginning with the
letter C. In a parameter query, you can prompt the user for a pattern to search for.

The following example returns data that begins with the letter P followed by any letter between A and
F and three digits:

Like "P[A-F]###"

The following table shows how you can use Like to test expressions for different patterns.

Kind of match Pattern Match (returns True) No match (returns False)
Multiple characters a*a aa, aBa, aBBBa aBC

ab abc, AABB, Xab aZb, bac
Special character a[*]a a*a aaa
Multiple characters ab* abcdefg, abc cab, aab
Single character a?a aaa, a3a, aBa aBBBa
Single digit a#a a0a, a1a, a2a aaa, a10a
Range of characters [a-z] f, p, j 2, &
Outside a range [!a-z] 9, &, % b, a
Not a digit [!0-9] A, a, &, ~ 0, 1, 9
Combined a[!b-m]# An9, az0, a99 abc, aj0

PSQL Jet Database Engine SQL Data Types
The PSQL Jet database engine SQL data types consist of 13 primary data types defined by the PSQL
Jet database engine and several valid synonyms recognized for these data types.

The following table lists the primary data types. The synonyms are identified in PSQL Jet Database
Engine SQL Reserved Words.

Data type Storage size Description
BINARY 1 byte per

character
Any type of data may be stored in a
field of this type. No translation of the
data (for example, to text) is made.
How the data is input in a binary field
dictates how it will appear as output.

BIT 1 byte Yes and No values and fields that
contain only one of two values.

BYTE 1 byte An integer value between 0 and 255.
COUNTER 4 bytes A number automatically incremented

by the PSQL Jet database engine
whenever a new record is added to a
table. In the PSQL Jet database
engine, the data type for this value is
Long.

CURRENCY 8 bytes A scaled integer between
– 922,337,203,685,477.5808 and
922,337,203,685,477.5807.

DATETIME
(See DOUBLE)

8 bytes A date or time value between the years
100 and 9999.

GUID 128 bits A unique identification number used
with remote procedure calls.

SINGLE 4 bytes A single-precision floating-point value
with a range of – 3.402823E38 to
– 1.401298E-45 for negative values,
1.401298E-45 to 3.402823E38 for
positive values, and 0.

DOUBLE 8 bytes A double-precision floating-point value
with a range of
– 1.79769313486232E308 to
– 4.94065645841247E-324 for
negative values, 4.94065645841247E-
324 to 1.79769313486232E308 for
positive values, and 0.

SHORT 2 bytes A short integer between – 32,768 and
32,767.

LONG 4 bytes A long integer between
– 2,147,483,648 and 2,147,483,647.

LONGTEXT 1 byte per
character

Zero to a maximum of 1.2 gigabytes.

LONGBINARY As required Zero to a maximum of 1.2 gigabytes.
Used for OLE objects.

TEXT 1 byte per
character

Zero to 255 characters.

Note      You can also use the VALUE reserved word in SQL statements.

PSQL Jet Database Engine SQL Reserved Words
The following list includes all words reserved by the PSQL Jet database engine for use in SQL
statements. The words in the list that aren't in all uppercase letters are also reserved by other
applications. Consequently, the individual Help topics for these words provide general descriptions
that don't focus on SQL usage.

Note      Words followed by an asterisk (*) are reserved but currently have no meaning in the context
of a PSQL Jet SQL statement (for example, Level and TableID).

A
ADD
ALL
Alphanumeric ¾ See TEXT
ALTER
And

ANY
AS
ASC
AUTOINCREMENT ¾ See COUNTER
Avg

B-C
Between
BINARY
BIT
BOOLEAN ¾ See BIT
BY
BYTE
CHAR, CHARACTER ¾ See TEXT

COLUMN
CONSTRAINT
Count
COUNTER
CREATE
CURRENCY

D
DATABASE
DATE ¾ See DATETIME
DATETIME
DELETE
DESC

DISALLOW
DISTINCT
DISTINCTROW
DOUBLE   
DROP

E-H
Eqv
EXISTS
FLOAT, FLOAT8 ¾ See DOUBLE
FLOAT4 ¾ See SINGLE
FOREIGN

FROM
GENERAL ¾ See LONGBINARY
GROUP
GUID
HAVING

I
IEEEDOUBLE ¾ See DOUBLE
IEEESINGLE ¾ See SINGLE
IGNORE

INNER
INSERT
INT, INTEGER, INTEGER4 ¾ See
LONG

Imp
In
IN
INDEX

INTEGER1 ¾ See BYTE
INTEGER2 ¾ See SHORT
INTO
Is

J-M
JOIN
KEY
LEFT
Level*
Like
LOGICAL, LOGICAL1 ¾ See BIT
LONG

LONGBINARY
LONGTEXT
Max
MEMO ¾ See LONGTEXT
Min
Mod
MONEY ¾ See CURRENCY

N-P
Not
NULL
NUMBER ¾ See DOUBLE
NUMERIC ¾ See DOUBLE
OLEOBJECT ¾ See LONGBINARY
ON
OPTION
Or

ORDER
Outer*
OWNERACCESS
PARAMETERS
PERCENT
PIVOT
PRIMARY
PROCEDURE

Q-S
REAL ¾ See SINGLE
REFERENCES
RIGHT
SELECT
SET
SHORT
SINGLE

SMALLINT ¾ See SHORT
SOME
StDev
StDevP
STRING ¾ See TEXT
Sum

T-Z
TABLE
TableID*
TEXT
TIME ¾ See DATETIME
TIMESTAMP ¾ See DATETIME
TOP
TRANSFORM
UNION

VALUE
VALUES
Var
VARBINARY ¾ See BINARY
VARCHAR ¾ See TEXT
VarP
WHERE
WITH

UNIQUE
UPDATE

Xor
YESNO ¾ See BIT

SQL Expressions
An SQL expression is a string that makes up all or part of an SQL statement. For example, the
FindFirst method on a Recordset object uses an SQL expression consisting of the selection criteria
found in an SQL WHERE clause.

The PSQL Jet database engine uses the Visual Basic for Applications (or VBA) expression service to
perform simple arithmetic and function evaluation. All of the operators used in PSQL Jet SQL
expressions (except Between, In, and Like) are defined by the VBA expression service. In addition,
the VBA expression service offers over 100 VBA functions that you can use in SQL expressions. For
example, you can use these VBA functions to compose an SQL query in the Microsoft Access query
Design view, and you can also use these functions in an SQL query in the DAO OpenRecordset
method in Microsoft Visual C++, Microsoft Visual Basic, and Microsoft Excel code.

Using Wildcard Characters in String Comparisons
Built-in pattern matching provides a versatile tool for making string comparisons. The following table
shows the wildcard characters you can use with the Like operator and the number of digits or strings
they match.

Character(s)
in pattern Matches in expression
? Any single character
* Zero or more characters
Any single digit (0 – 9)
[charlist] Any single character in charlist
[!charlist] Any single character not in charlist

You can use a group of one or more characters (charlist) enclosed in brackets ([]) to match any single
character in expression, and charlist can include almost any characters in the ANSI character set,
including digits. In fact, you can use the special characters opening bracket ([), question mark (?),
number sign (#), and asterisk (*) to match themselves directly only if enclosed in brackets. You can't
use the closing bracket (]) within a group to match itself, but you can use it outside a group as an
individual character.

In addition to a simple list of characters enclosed in brackets, charlist can specify a range of
characters by using a hyphen (-) to separate the upper and lower bounds of the range. For example,
using [A-Z] in pattern results in a match if the corresponding character position in expression contains
any of the uppercase letters in the range A through Z. You can include multiple ranges within the
brackets without delimiting the ranges. For example, [a-zA-Z0-9] matches any alphanumeric
character.

Other important rules for pattern matching include the following:

· An exclamation mark (!) at the beginning of charlist means that a match is made if any character
except those in charlist are found in expression. When used outside brackets, the exclamation
mark matches itself.

· You can use the hyphen (-) either at the beginning (after an exclamation mark if one is used) or at
the end of charlist to match itself. In any other location, the hyphen identifies a range of ANSI
characters.

· When you specify a range of characters, the characters must appear in ascending sort order (A-Z
or 0-100). [A-Z] is a valid pattern, but [Z-A] isn't.

· The character sequence [] is ignored; it's considered to be a zero-length string ("").

